Next-generation sequencing workflow for assembly of nonmodel mitogenomes exemplified with North Pacific albatrosses (Phoebastria spp.).
نویسندگان
چکیده
Use of complete mitochondrial genomes (mitogenomes) can greatly increase the resolution achievable in phylogeographic and historical demographic studies. Using next-generation sequencing methods, it is now feasible to efficiently sequence mitogenomes of large numbers of individuals once a reference mitogenome is available. However, assembling the initial mitogenomes of nonmodel organisms can present challenges, for example, in birds, where mtDNA is often subject to gene rearrangements and duplications. We developed a workflow based on Illumina paired-end, whole-genome shotgun sequencing, which we used to generate complete 19-kilobase mitogenomes for each of three species of North Pacific albatross, a group of birds known to carry a tandem duplication. Although this duplication had been described previously, our procedure did not depend on this prior knowledge, nor did it require a closely related reference mitogenome (e.g. a mammalian mitogenome was sufficient). We employed an iterative process including de novo assembly, reference-guided assembly and gap closing, which enabled us to detect duplications, determine gene order and identify sequence for primer positioning to resolve any mitogenome ambiguity (via minimal targeted Sanger sequencing). We present full mtDNA annotations, including 22 tRNAs, 2 rRNAs, 13 protein-coding genes, a control region and a duplicated feature for all three species. Pairwise comparisons supported previous hypotheses regarding the phylogenetic relationships within this group and occurrence of a shared tandem duplication. The resulting mitogenome sequences will enable rapid, high-throughput NGS mitogenome sequencing of North Pacific albatrosses via direct reference-guided assembly. Moreover, our approach to assembling mitogenomes should be applicable to any taxon.
منابع مشابه
Wind, Waves, and Wing Loading: Morphological Specialization May Limit Range Expansion of Endangered Albatrosses
Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean...
متن کاملMitochondrial transcripts and associated heteroplasmies of Ancistrus spp. (Siluriformes: Loricariidae)
This data-set complements our paper entitled "The use of transcriptomic next-generation sequencing data to assembly mitochondrial genomes of Ancistrus spp. (Loricariidae)" [6]. Here, we present the nucleotide sequences of each transcript used for mitogenomes assembly, as well as tables presenting the location of each transcript in the mitogenomes; the frequency, location and codon position of t...
متن کاملProbable extirpation of a breeding colony of Short-tailed Albatross (Phoebastria albatrus) on Bermuda by Pleistocene sea-level rise.
Albatrosses (Diomedeidae) do not occur in the North Atlantic Ocean today except as vagrants, although five species were present in the early Pliocene. No fossil breeding sites of albatrosses were known previously. The timing of extinction of albatrosses in the North Atlantic was likewise unknown. Deposits that formed near present-day sea level along the southeastern shore of Bermuda contain rem...
متن کاملContaminant-associated alteration of immune function in black-footed albatross (Phoebastria nigripes), a North Pacific predator.
Environmental pollution is ubiquitous and can pose a significant threat to wild populations through declines in fitness and population numbers. To elucidate the impact of marine pollution on a pelagic species, we assessed whether toxic contaminants accumulated in black-footed albatross (Phoebastria nigripes), a wide-ranging North Pacific predator, are correlated with altered physiological funct...
متن کاملWhy does the ocean sunfish bask?
Basking at the sea surface is a well known, but peculiar behavior of ocean sunfish (Mola mola). One of hypotheses for this behavior is parasite elimination. However, in oceanic regions, very little direct evidence exists for this form of interspecific communication. In pelagic waters of the North Pacific Ocean, we observed a school of 57 ocean sunfish, that were heavily infested around the base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology resources
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2015